

Ontario's Renewable Energy Procurement Landscape

Lisa Asbreuk

Presentation to SWITCH – SE Ontario's Alternative Energy Cluster December 8 2023

Ontario election – June 2018

- Ford government elected
- Grean Energy Act repealed
- LRP 2 cancelled mid-process
- Contracts terminated for projects pre-COD

2018 – 2023 reality check

- Some BTM (small) solar installations
- Some incremental policy improvements for small installations
- Net metering permitted (12 month carry forward cap)
- Virtual (third party) net metering permitted
- Interconnecting costs remain a challenge

- Some BTM battery installations
- Mainly industrial customers for peak pricing GA avoidance
- No integrated resource plan (IRP)
- No new wind farms
- No new solar farms
- No open procurement processes for any renewable energy
- Skilled professionals focused on Alberta and US

- Energy systems college/trades graduates leaving Ontario
- Project work for sub trades ended
- No new renewable energy capital invested in Ontario (except M+A of existing assets)
- Adversarial messaging + litigation + change of law shock = unwelcome investment climate

positive stories in communities never told

So, what has been happening?

Does Ontario need or want renewable energy in our supply mix?

Capacity vs Energy

Electricity is measured in both capacity + energy.

Talking about an electricity system requires understanding both.

CAPACITY

Maximum output an electricity generator can physically produce (kW or MW)

size

ENERGY

Amount of electricity a generator produces over a period of time (kWh or MWh)

delivery

P2D Report

- Ministry asked IESO to evaluate a scenario of
 - decade moratorium on new natural gas procured
 - phase out of natural gas
 - achieving zero emissions in electricity sector in Ontario.
- IESO reported back:
 - Gas generation moratorium not currently feasible
 - Currently no analogous replacement
 - Natural gas is needed for reliability
- So instead, showed *pathway to decarbonize*, how ON could achieve a net-zero grid while maintaining system reliability
- Significant new electricity infrastructure required in short period for energy transition

P2D gas moratorium scenario

- Could not start before 2027
- Additional gas needed until then (need ~1500 MW gas procured 2025-2027 alongside batteries)
- Natural gas fleet will increase mid-2020s
- Will increase costs to consumers
- \$26B in new infrastructure needed
- May not need to procure more gas after 2027
- Gas fleet size modelling:
 - estimates ~12,000 MW (2027)
 - reduced to ~8000 MW (2035) (5000 MW needed, 3000 MW standby)
- After nuclear refurbishments, could retire 4000 MW gas (emissions drop 60%)
- But still need some gas in GTA and some gas for system reliability

Pathway to decarbonization scenario (2050)

- More aggressive electricity demand forecast (peaks 3x higher than today)
- Need additional new 69,000 MW of non-emitting supply
- Assumes
 - electricity annual growth rate of 2.7%
 - 5000 MW demand reductions from conservation
 - up to 2035 gas plants can operate to Y25
 - after 2035 gas plants retired at end of contract (standby for reliability)
 - hydrogen contributes to peaks

P2D report extracts – peaking forecast snapshot

Summer peak increasing to >36,000 MW

Winter peak increasing to >60,000 MW

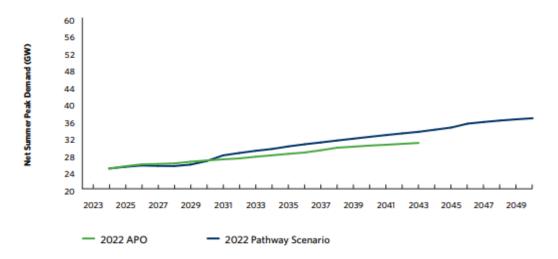
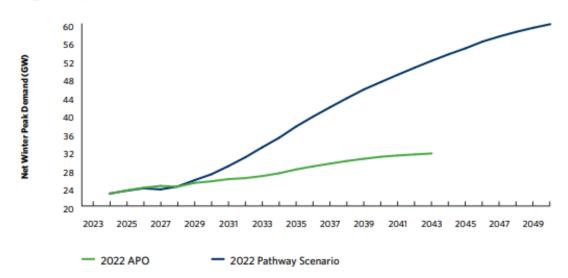
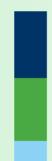



Figure 9 | Annual Winter Peak Demand



PREPARE FOR SITING AND LAND USE

Siting requirements **14 times** the size of Toronto

System Capacity Today

42,000 _{MW}

Natural Gas

FOCUS ON INDIGENOUS PARTNERSHIPS

Increased role beyond current **20%** participation rate in electricity projects

DEVELOP CAPITAL/LABOUR RESOURCES

A potential **six-fold increase** in existing workforce to build projects

FOCUS ON INNOVATION

New technologies to drive new supply such as **15,000 MW** of hydrogen capacity

INCREASE POLICY CERTAINTY

Near and long-term certainty to drive **private** sector investment in infrastructure and technology

STREAMLINE REGULATORY PROCESSES

Streamlined siting and regulatory processes keeping the **local perspective** at the core

Pathways to Decarbonization 2050 Scenario

88,000

Hydro

Wind

Bioenergy Solar

Hydrogen

Demand Response

Imports Storage

- Scope and magnitude of system changes are huge
- IESO identifies "no regret" actions to be taken now:
 - accelerate efforts to acquire non-emitting supply
 - implement CDM directives
 - start EA work for
 - long-duration storage
 - hydroelectric
 - TX infrastructure
 - Invest in emerging low-carbon fuels
 - Galvanize indigenous communities + stakeholders + *municipalities*
 - Prepare regulatory/permitting processes for scale

Key assumptions:

- Assumes decarbonization of broader economy means transition to electricity for energy
- Assumed offshore wind may be available (despite current moratorium)
- Assumes **DER growth** but doesn't quantify b/c bulk system assessment
- What will be procured? (P2D scenario)
 - Need 17,800 MW new nuclear
 - Need 17,600 MW new wind
 - Need 650 MW new hydroelectric
 - Need new solar in interim years ~6000MW levels off at 2036
 - Solar value diminishes as we shift to winter peak
 - Current battery procurement plus need ~2000 MW new long duration batteries in late 2030s

Figure 12 | Pathway Scenario - Installed Capacity in 2050

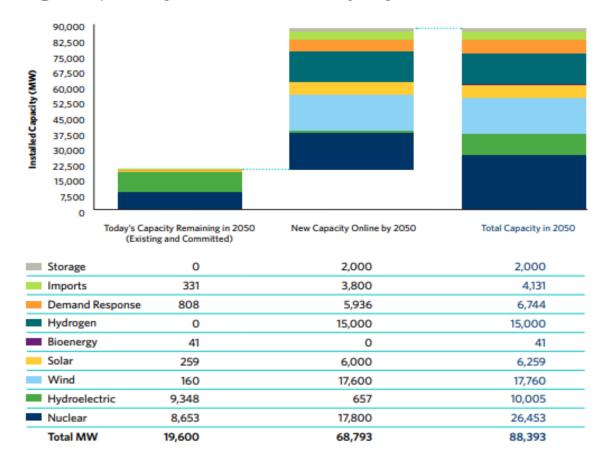
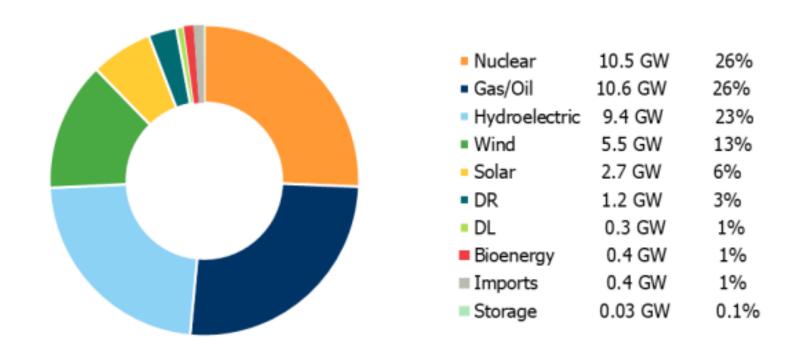


Figure 13 | Pathway Scenario - Energy in 2050

IESO Annual Planning Outlook (APO)

APO DOES:

- Identify future system needs + influencing factors
- Inform the next Annual Acquisition Report (AAR)
- Forecasts demand + supply + TX assumptions
- Considers:
 - economic growth; load growth
 - decarbonization trends
 - electrification trends


APO DOES NOT:

 Speculate on supply mix (that is set by Ontario government policy)

IESO Annual Planning Outlook (APO)

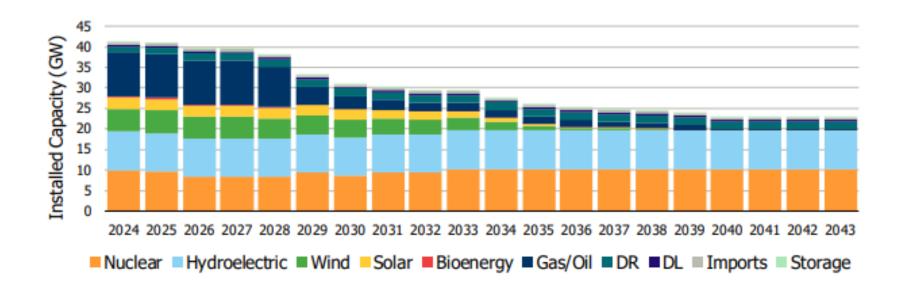

- Concludes "moderate rise in the average growth of demand" to $\sim 1.9\%$ annually.
- Ontario is in period of demand growth, trending to dual peaking summer + winter.

Figure 6 | 2023 Installed Capacity by Fuel Type⁷

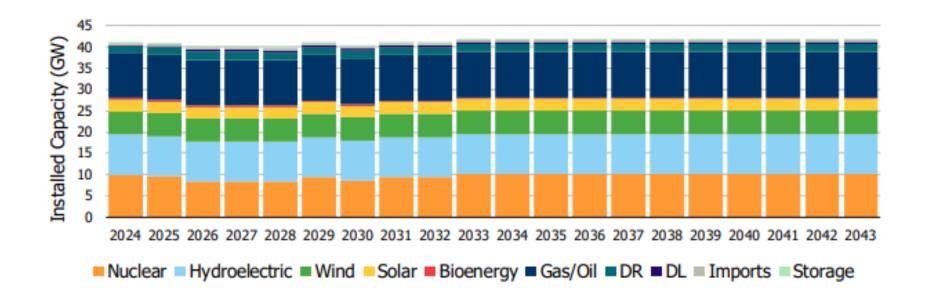
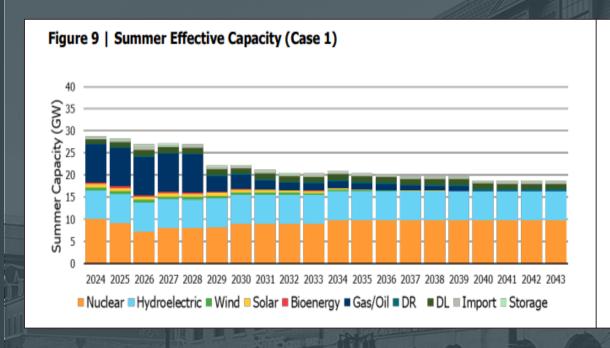

Case 1 scenario (existing contracts)

Figure 7 | Installed Capacity (Case 1)



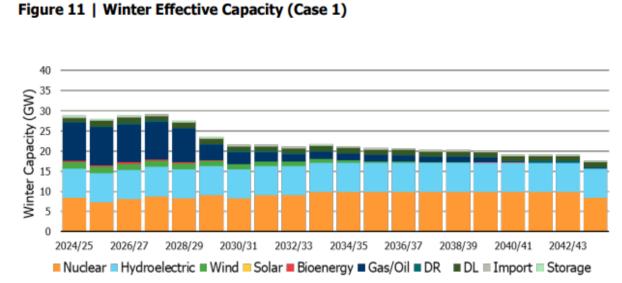

Case 2 scenario (re-contracting)

Figure 8 | Installed Capacity (Case 2)

Case 1 scenario - effective capacity (not nearly enough)

Case 2 - effective capacity (not enough)

Figure 10 | Summer Effective Capacity (Case 2)

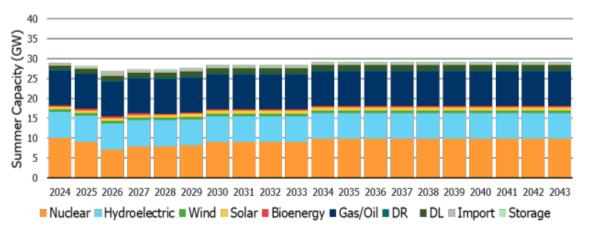
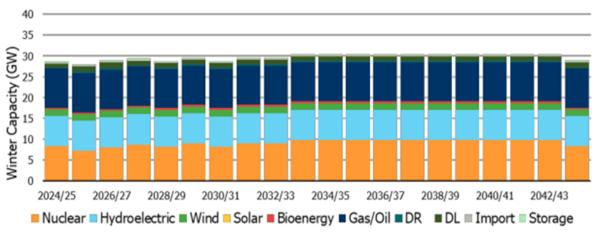
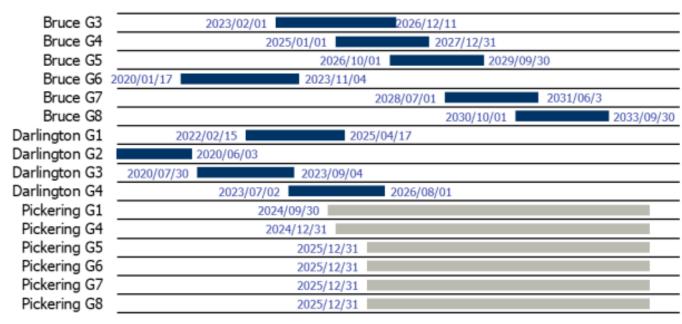



Figure 12 | Winter Effective Capacity (Case 2)



- Converging dynamics means "anticipated capacity **Shortfalls** in the mid-2020s"
 - Demand growth
 - Nuclear refurbishments
 - Expiring generation contracts

Nuclear refurbishment + retirement

- Pickering retirement end of 2025 (potential extension to end of summer 2026)
- Refurbishments at Darlington and Bruce (many until 2029)

Figure 13 | Nuclear Refurbishment and Retirement Schedule¹¹

2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035

■ Refurbishment ■ Retirement

Resource Adequacy

- Short Term? NO
- Medium Term? NO
- Long Term? NO

Figure 19 | Summer Capacity Surplus/Deficit

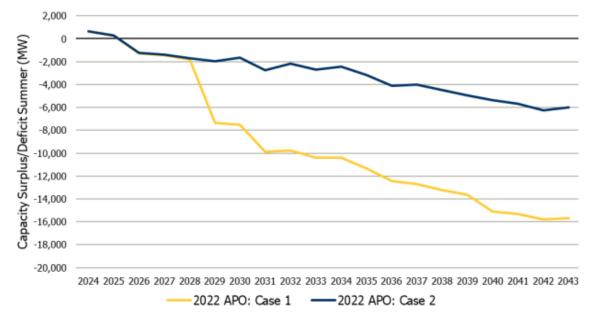


Figure 20 | Winter Capacity Surplus/Deficit

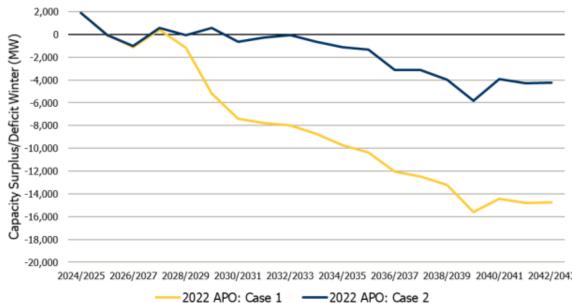


Figure 21 | Energy Adequacy Outlook (Case 1)

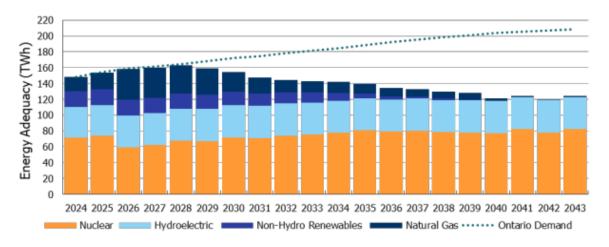
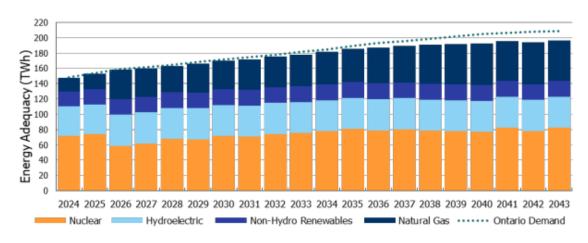
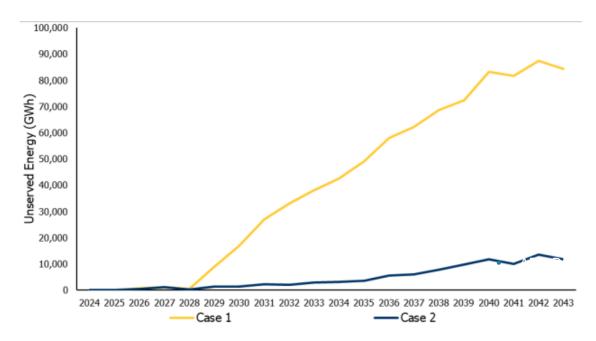
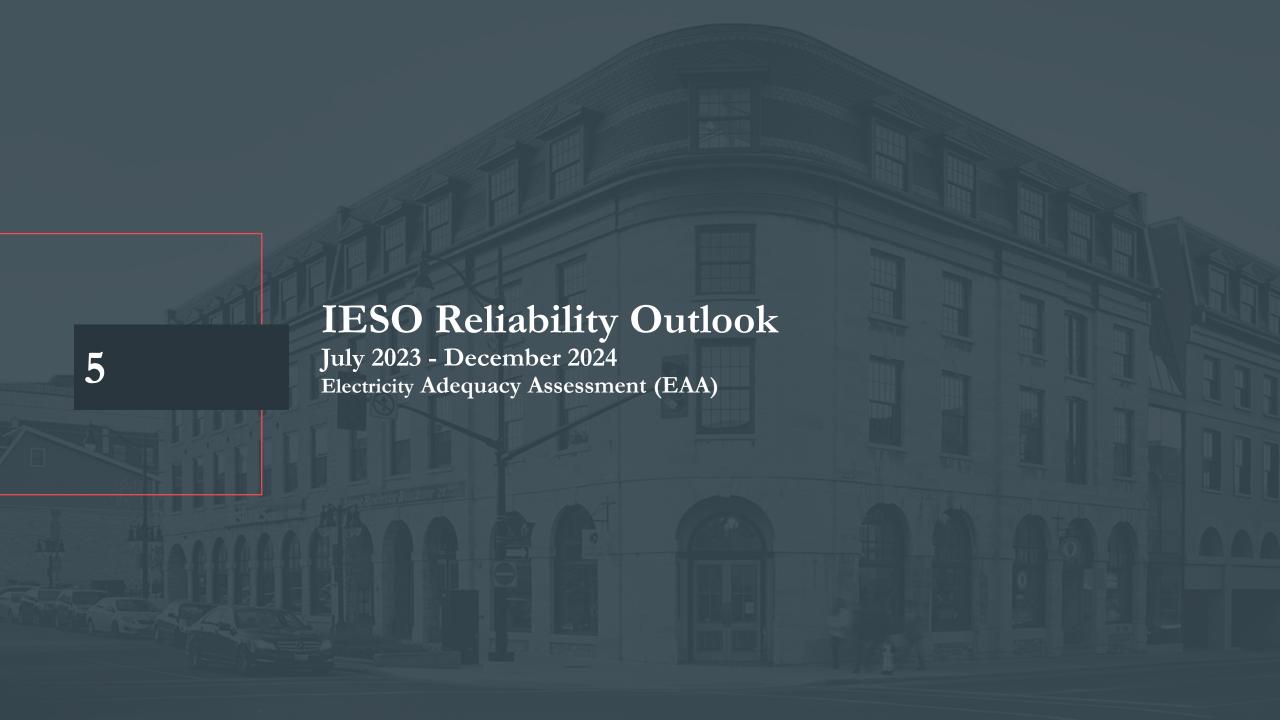




Figure 22 | Energy Adequacy Outlook (Case 2)

APO

Figure 26 | Potentially Unserved Energy



- TX system congestion, constraints and thermal limitations identified
- CASE 1 SCENARIO identifies
 - >16,000 MW unserved energy needs during forecast period
 - 6000 WM baseload plus
 - 10,000 MW peaking/intermittent
 - unserved energy = not enough power
 - unserved energy system-wide after all generation facilities dispatched, or
 - local/regional unserved energy if TX transfer limits reached
- Serious concerns start in 2029
- 4000 MW new <u>capacity</u> target for first Long Term RFP
- Increased attention being paid to transmission (TX) lines as critical for reliability

- Q1-Q2 consultations
- Q3-Q4 more consultation + industry comments
- Considerable constructive comments that the IESO must provide more certainty on:
 - Re-powering
 - Renewables procurement for COD dates beyond 2030
 - Methodical and recurring commitment to procuring renewables to
 - retain global investors
 - allow developers to foster relationships with communities + municipalities + indigenous partners
- Not finalized
- IESO decided build feedback into next APO/AAR in 2024.

 Forecasted sufficient reserves for winters of 2023-24 and 2024-25

- Forecasted reserves were below requirements for certain weeks in summer 2023
- Planned outages (nuclear + gas) get rescheduled
- Supply tightness dictates permitted planned outage / maintenance scheduling until things relax

Figure 4-3 | Comparison of Normal and Extreme Weather: Firm Scenario Reserve Above Requirement

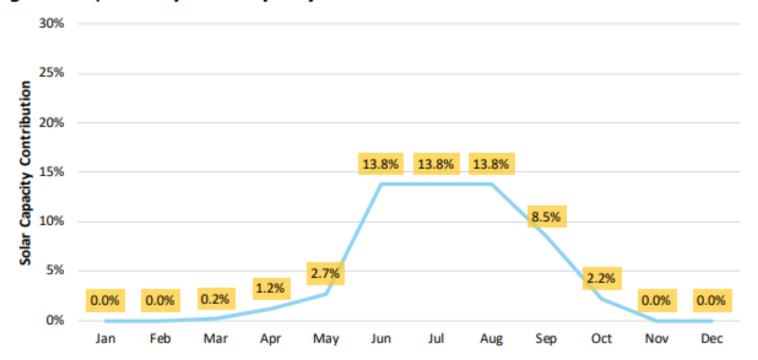

Wind capacity contribution

Figure 4-1 | Monthly Wind Capacity Contribution Values

Solar capacity contribution

Figure 4-2 | Monthly Solar Capacity Contribution Values

keeping perspective

Peak resources available summer 2023

Table 4-1 | Existing Grid-Connected Resource Capacity

	Forecast Capability Total Installedat 2023 Summer Peak Capacity Normal Weather		Forecast Capability at 2023 Summer Peak Extreme Weather		Change in Number of	Change in Installed
Fuel Type	(MW)	(MW)	(MW)	Stations	Stations	Capacity
Nuclear	13,144	8,560	8,560	5	0	55
Hydroelectric	8,922	5,055	4,434	76	0	-64
Gas/Oil	10,470	9,453	9,041	33	0	-12
Wind	4,883	720	720	41	0	0
Biofuel	296	286	286	7	0	0
Solar	478	66	66	10	0	0
Demand Measures	-	740	740	-	-	-
Firm Imports (+) / Exports (-) (MW)	-	223	0	-	-	-
Total	38,193	25,103	23,847	172	0	-20

Powering Ontario's Growth

- Highlight's current clean energy advantage
- Focus on affordability
- Recognizes electrification trend
- Predicts continued growth
- Slim commentary on solar + wind

- Chapters on:
 - New nuclear
 - Nuclear refurbishment
 - Darlington SMR build
 - Competitive procurement for new generation (wind, solar, hydro, biogas) + storage (batteries)
 - Pumped storage
 - DERs
 - Natural gas generation
 - Reconstructing small hydroelectric
 - Optimize OPG large hydroelectric fleet to increase generation
 - TX expansion
 - Supporting growth in Eastern Ontario and Ottawa region
 - Hydrogen strategy

- An integrated energy plan will come through the Electrification and Energy Transition Plan (EETP)
- Repeated mantra of keeping costs down

Procurement RFPs rolling out

• **Expedited** Long Term Procurement 1 RFP

Long Term Procurement 1 RFP

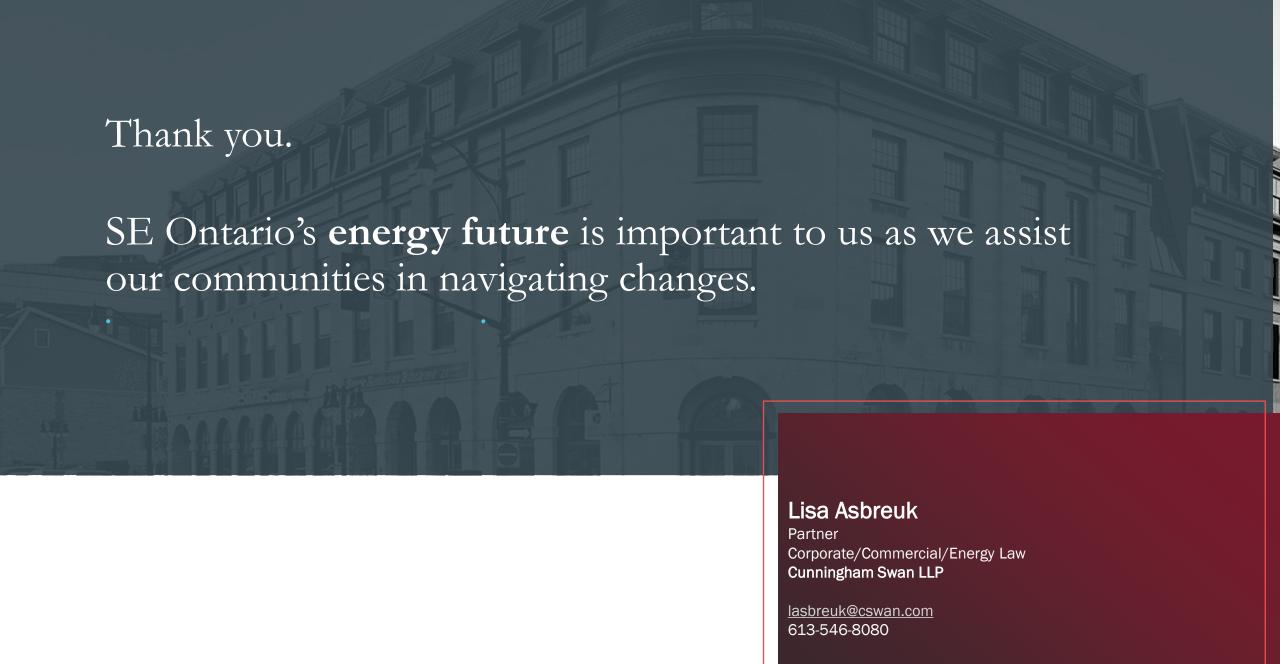
Long Term Procurement 2 RFP

Long Term Procurement 3 RFP

Long Term Procurement 4 RFP

E-LT1 (closed)

LT1 (open now)


LT2 (likely 2024)

LT3 (likely 2025)

LT4 (TBD)

Procurement RFPs rolling out

E-LT1 (closed)	 IESO awarded contracts early 2023 Mainly: natural gas; battery energy storage systems (BESS)
LT1 (open)	•
	IESO is procuring Capacity : natural gas; battery energy storage systems (BESS)
	TX interconnection capacity in SE Ontario, so considerable developer interest here
	Highly competitive
	Valuable points for municipal support resolutions (MSRs)
	• Dec 12, 2023 - bids due
	June 30, 2024 - contracts awarded to successful projects
LT2 (next year)	
	IESO will procure energy
	Seeking dispatchable generation assets (may be co-located with storage)
	Under design discussion now - many questions
LT3, LT4 and beyond and	Details TBD
MTP programs	 Little doubt both energy and capacity will be required to be procured for COD dates into the 2030-2035 COD timeframe

