

L'Accélérateur de transition

Hydrogen & the Transition to Net-Zero Greenhouse Gas Emissions: Ontario as a Case Study

David B Layzell PhD, FRSC.

Energy Systems Architect, The Transition Accelerator Faculty Emeritus Professor, CESAR, University of Calgary

> Email: <u>dlayzell@transitionaccelerator.ca</u> Web: <u>www.transitionaccelerator.ca</u>

> > January 5, 2024

Canada's Greenhouse Gas (GHG) Emissions

To date, Canada's 'incremental' strategies have only been successful in stabilizing GHGs.

But to address climate change, the developed world must achieve net-zero GHG emissions by 2050.

> This will require **Transformative Changes**,

esp. in energy systems that account for 82% of Cdn GHGs.

Zero GHG Emission Energy Carriers

The default choice, but not good fit for all markets (e.g. Long distance and heavy-duty transport, high temperature heat, large temporal shifts in demand).

Uses existing technologies (drop-in fuels) but limited feedstock without threatening food supply / ecosystems.

Energy-rich gas that produces only water (H₂O) when used.

AKA Fertilizer. Energy-rich gas/liquid made from H₂ & N₂ (air)

Some role for end use sectors (*e.g. Steel, cement*). Larger potential role in energy carrier production

* CCS= Carbon Capture and Geological Storage

How Can Canada Transition to Net Zero & What is the Role for H₂ and NH₃?

L'Accélérateur de transition

...PAN-CANADIAN, NON-PROFIT FOCUSED ON DESIGNING & BUILDING CREDIBLE, COMPELLING TRANSITION PATHWAYS TO NET-ZERO How can Canada 'win'?

What are the best transition pathways for regions across Canada?

Outline

1. Hydrogen (H₂) 101

- 2. Towards a new H₂ value chain
- 3. A Scenario for the Transition of Ontario's 2019 Energy System to Net-Zero
- 4. Conclusion

				Th	e P	eri	od	ic 1	Tab	le	of t	the	El	em	en	ts		
				The sm	allest, l	ightest	and m	lost cor	nmon	elemen	t in the	e Unive	rse (~7	4% all a	atoms)			
1	1 1 Hydrogen	$\square \text{ Hydrogen atoms can form bonds with many other atoms:} \qquad \qquad$														18 2 Hee Helium		
	Nonmetal	2		\square \square \square an argument volume:									13	14	15	16	17	Noble Gas
2	2 Lithium Alkali Metal	4 Be Beryllium Alkaline Earth Me		as GAS 1/3 rd of NG; as LQD (-253°C): ¼ of diesel											Neon Noble Gas			
3	11 Na Sodium Alkali Metal	12 Mg Magnesium Alkaline Earth Me		H ₂ is m	lost effi ₅	ciently	moved	d in pip ®	elines a	as a gas	11	12	13 Al Aluminum Post-transition M	14 Si Silicon Metalloid	15 P Phosphorus Nonmetal	16 S Sulfur Nonmetal	17 Cl Chlorine Halogen	18 Ar Argon Noble Gas
2	19 K Potassium Alkali Metal	20 Ca Calcium Alkaline Earth Me	21 SC Scandium Transition Metal	22 Ti Titanium Transition Metal	23 V Vanadium Transition Metal	24 Cr Chromium Transition Metal	25 Mn Manganese Transition Metal	26 Fe Iron Transition Metal	27 CO Cobalt Transition Metal	28 Ni Nickel Transition Metal	29 Cu Copper Transition Metal	30 Zn _{Zinc} Transition Metal	31 Ga Gallium Post-transition M	32 Ge Germanium Metalloid	33 As Arsenic Metalloid	34 Se Selenium Nonmetal	35 Br Bromine Halogen	36 Kr Krypton Noble Gas
ŧ	37 Rb Rubidium Alkali Metal	38 Sr Strontium Alkaline Earth Me	39 Y Yttrium Transition Metal	40 Zr Zirconium Transition Metal	41 Nb Niobium Transition Metal	42 Mo Molybdenum Transition Metal	43 TC Technetium Transition Metal	44 Ru Ruthenium Transition Metal	45 Rh Rhodium Transition Metal	46 Pd Palladium Transition Metal	47 Ag Silver Transition Metal	48 Cd Cadmium Transition Metal	49 In Indium Post-transition M	50 Sn _{Tin} Post-transition M	51 Sb Antimony Metalloid	52 Te Tellurium Metalloid	53 lodine Halogen	54 Xe Xenon Noble Gas
6	55 CS Cesium Alkali Metal	56 Ba Barium Alkaline Earth Me	*	72 Hf Hafnium Transition Metal	73 Ta Tantalum Transition Metal	74 W Tungsten Transition Metal	75 Re Rhenium Transition Metal	76 OS Osmium Transition Metal	77 Ir Iridium Transition Metal	78 Pt Platinum Transition Metal	79 Au Gold Transition Metal	80 Hg Mercury Transition Metal	81 TI Thallium Post-transition M	82 Pb Lead Post-transition M	83 Bi Bismuth Post-transition M	84 Po Polonium Metalloid	85 At Astatine Halogen	86 Rn Radon Noble Gas
7	87 Fr Francium Alkali Metal	88 Ra Radium Alkaline Earth Me	**	104 Rf Rutherfordium Transition Metal	105 Db Dubnium Transition Metal	106 Sg Seaborgium Transition Metal	107 Bh Bohrium Transition Metal	108 HS Hassium Transition Metal	109 Mt Meitnerium Transition Metal	110 DS Darmstadtium Transition Metal	111 Rg Roentgenium Transition Metal	112 Cn Copernicium Transition Metal	113 Nh Nihonium Post-transition M	114 Fl Flerovium Post-transition M	115 MC Moscovium Post-transition M	116 LV Livermorium Post-transition M	117 TS Tennessine Halogen	118 Og Oganesson Noble Gas
				57 La Lanthanum Lanthanide	58 Ce Cerium Lanthanide	59 Pr Praseodymium Lanthanide	60 Nd Neodymium Lanthanide	61 Pm Promethium Lanthanide	62 Sm Samarium Lanthanide	63 Eu Europium Lanthanide	64 Gd Gadolinium Lanthanide	65 Tb Terbium Lanthanide	66 Dy Dysprosium Lanthanide	67 Ho Holmium Lanthanide	68 Er Erbium Lanthanide	69 Tm Thulium Lanthanide	70 Yb Ytterbium Lanthanide	71 Lu Lutetium Lanthanide
Fi <u>h</u> i ih	rom: <u>ttps://pubc</u> a.gov/perior	<u>:hem.ncbi.nl</u> dic-table/	<u>m.n</u> **	89 Ac Actinium	90 Th Thorium	91 Pa Protactinium	92 U Uranium	93 Np Neptunium	94 Pu Plutonium	95 Am Americium	96 Cm Curium	97 Bk Berkelium	98 Cf Californium	99 Es Einsteinium	100 Fm Fermium	101 Md Mendelevium	102 No Nobelium	103 Lr Lawrencium

Making and Using Hydrogen (H₂) and Ammonia (NH₃)

Canada: Among the world's

lowest cost producers of 'Blue' & 'Green' H₂

From fossil fuels (NG) coupled to carbon capture and storage (CCS)

From water electrolysis using very low C electricity (wind, PV, hydro, nuclear)

Adapted from Asia Pacific Energy Research Centre. 2018. Perspectives on H₂ in the APEC Region. (Figure 3.4) <u>https://aperc.ieej.or.jp/file/2018/9/12/Perspectives+on+Hydrogen</u> <u>+in+the+APEC+Region.pdf</u>

What markets offer the most potential in the short term?

...PAN-CANADIAN, NON-PROFIT FOCUSED ON DESIGNING & BUILDING CREDIBLE, COMPELLING TRANSITION PATHWAYS TO NET-ZERO □ How can Canada 'win'?

What are the best transition pathways for regions across Canada?

Outline

- 1. Hydrogen (H₂) 101
- 2. Towards a new H₂ value chain
- 3. A Scenario for the Transition of Ontario's 2019 Energy System to Net-Zero
- 4. Conclusion

W Today's Hydrogen Value Chain

About 8-9 kt H₂/day in Canada for

- Bitumen upgrading to SCO
- Crude Oil to Refined Petrol. Prod. (RPP)
- Fertilizer (Ammonia) production
- □ Chemical & material production

New Value Chain For a Net-Zero Hydrogen Economy

US Invests US\$7 Billion in Hydrogen Hubs (Oct 2023)

H₂ Refueling Station for HD Vehicles

EDMONTON: OPENED IN OCT 2023 **CALGARY:** OPENING IN LATE 2024

Design, Build and Trial World's first two 63.5 t GVW HD Vehicle

-150

TRANSPOR

- Currently being built in Montreal
- Will arrive in Edmonton Q1 2024
- Will move freight on Hwy 2 in 2024-25

Alberta Motor Transport Association

Progress to Date (Continued)

AZEHT

ALBERTA ZERO-EMISSION HYDROGEN TRANSIT

EMISSIONS

ALBERTA

REDUCTION

Two H₂ fuel cell electric buses on road in Edmonton & Strathcona in 2023-24;

CP

HYDROGEN-POWERED LINE-HAUL FREIGHT LOCOMOTIVE

 First HFCE locomotive retrofit in 2022
Two other locomotives being converted now.

YEG PURCHASES 100 H₂ FUEL CELL ELECTRIC CARS

Fort Saskatchewan Hydrogen Blending Project

□ To decarbonize space heating

Other Initiatives: NH₃ as an Energy Carrier

https://www.kedglobal.com/futuremobility/newsView/ked202301180010

Off-grid, zero emission power generation

https://robbreport.com/motors/aviation/h2fly-aircraft-liquidhydrogen-fuel-1234740571/

O-WERA

https://www.canarymedia.com/articles/air-travel/zeroaviashydrogen-powered-test-plane-is-nearly-ready-for-takeoff

What's coming? *Hydrogen for Aviation*

...PAN-CANADIAN, NON-PROFIT FOCUSED ON DESIGNING & BUILDING CREDIBLE, COMPELLING TRANSITION PATHWAYS TO NET-ZERO □ How can Canada 'win'?

What are the best transition pathways for regions across Canada?

Outline

- 1. Hydrogen (H₂) 101
- 2. Towards a new H_2 value chain
- 3. A Scenario for the Transition of Ontario's 2019 Energy System to Net-Zero
- 4. Conclusion

Transitioning Ontario's 2019 Energy System to Net-Zero

Features of a 2019 Net-Zero Energy Transition in Ontario

JSE DEMAND	Low GHG El	ectricity	Bio-fue	ls		Hydrogen				
	Existing: Transport Agriculture Buildings	138 TWhr 34 4 61	Existing: Transport Official Agriculture Buildings	117 PJ 56 1 1		Existing: Transport Agriculture Buildings	0 t H₂/d 3,647 353 3,221			
END	P Industry TOTAL 2.1	<u>50</u> 287 TWhr X	For Industry TOTAL	47 222 PJ	+ 2	Vertified Total Industry TOTAL 2716 (power prod'n	$\frac{2,063}{9,284 \text{ t H}_2/\text{d}}$) = 12,000 t H ₂ /d			

- Sources?
 - Nuclear
 - Wind & Solar
 - Imported Hydro (QC)
 - \Box H₂ for peaking

- Forestry residues
- Municipal solid waste
- Agricultural residues
- Some Agric'l crops
- □ From wind, solar, nuclear when e⁻ supply>demand
- **From Natural Gas Pyrolysis**
- □ Import blue H₂ from USA

CONCLUSIONS

- To address climate change, it is imperative that we transition <u>away</u> from traditional FF-based energy carriers, and <u>towards</u> zero-emission energy carriers like electricity, biofuels, hydrogen and ammonia.
- □ In our end-use sector analysis for the 2019 Ontario energy system: the net-zero transition required a doubling in grid power and biofuels, and ~12,000+ t H₂/day.
- Some green and blue H₂ could be produced in Ontario, but most will need to be imported, probably from Michigan or Ohio. H₂ pipelines will be essential to achieve price targets.

David B Layzell PhD, FRSC.

Email: <u>dlayzell@transitionaccelerator.ca</u> Web: <u>www.transitionaccelerator.ca</u>

